本篇文章给大家谈谈植物和动物的基因组,以及动物基因和植物基因结合对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
1、植物的繁衍方式多种多样,因此植物基因突变生成多倍体有较大概率能存活、产生后代。而动物的繁衍一般都要经历生殖细胞的结合,发生突变的个体大多不能产生生殖细胞,或者胚胎不能正常发育。用杂交举例子:植物代表:橙子家族 动物:狮虎兽(虎狮兽)、驴,是不多的杂交品种,都不能正常繁殖。
2、多倍化后的植物细胞能正常分裂,三倍体、五倍体或非整倍体的植物甚至能通过无性生殖手段繁殖,因此它们易于批量制造。多倍体植物往往体型更大、生长速度更快,在自然界中更容易留存,且有利于人类作为食物来源,因此人们愿意培养并宣传它们。多倍体个体在无脊椎动物、两栖动物、爬行动物中较为常见。
3、动物有神经系统有思维,显然在这方面需要更多的调控。最后,动物界很少有多倍体,而植物中多倍化现象很常见。这也是个别植物基因组大到吓人的原因。
4、物种形成(小进化)主要有两种方式:一种是渐进式形成,即由一个种逐渐演变为另一个或多个新种;另一种是爆发式形成,即多倍化种形成,这种方式在有性生殖的动物中很少发生,但在植物的进化中却相当普遍,世界上约有一半左右的植物种是通过染色体数目的突然改变而产生的多倍体。
1、动物基因组和植物基因组的区别是动物基因组一般包括常染色体和性染色体如X和Y或Z动物基因组往往是二倍体,比较简单。而植物基因组在进化过程中会出现各种各样的重组组合,基因组比较杂,测序后组装比较困难。
2、虽然动物和植物基因组使用同一套编码语法(几乎同一套),例如相同的基因结构(启动子、编码区)、翻译体系(三碱基密码子和氨基酸对应关系)、RNA结构等等。但是当你对基因组的理解到达这个程度时,两者的区别就足够明显。当你能破译部分基因组序列所包含的信息时。
3、植物基因组往往比较大。植物基因组多倍体比较常见,而动物中极其罕见。植物基因组重复序列含量往往更高。
4、植物线粒体基因组的特性、成因及其后果是植物学研究的焦点之一。植物线粒体基因组的特点显著,表现为基因组大小和结构的变异巨大,而基因本身却极度保守;基因分布极为稀疏,富含大量非编码序列;存在大量RNA编辑现象。
5、这里,就是我个人认为的,动物和植物基因组最大的区别。不是说植物基因组没有调控能力,而是相比而言,动物的调控行为更加复杂。动物有神经系统有思维,显然在这方面需要更多的调控。最后,动物界很少有多倍体,而植物中多倍化现象很常见。这也是个别植物基因组大到吓人的原因。
6、植物的繁衍方式多种多样,因此植物基因突变生成多倍体有较大概率能存活、产生后代。而动物的繁衍一般都要经历生殖细胞的结合,发生突变的个体大多不能产生生殖细胞,或者胚胎不能正常发育。用杂交举例子:植物代表:橙子家族 动物:狮虎兽(虎狮兽)、驴,是不多的杂交品种,都不能正常繁殖。
动物基因组和植物基因组的区别是动物基因组一般包括常染色体和性染色体如X和Y或Z动物基因组往往是二倍体,比较简单。而植物基因组在进化过程中会出现各种各样的重组组合,基因组比较杂,测序后组装比较困难。
虽然动物和植物基因组使用同一套编码语法(几乎同一套),例如相同的基因结构(启动子、编码区)、翻译体系(三碱基密码子和氨基酸对应关系)、RNA结构等等。但是当你对基因组的理解到达这个程度时,两者的区别就足够明显。当你能破译部分基因组序列所包含的信息时。
植物基因组往往比较大。植物基因组多倍体比较常见,而动物中极其罕见。植物基因组重复序列含量往往更高。
植物线粒体基因组结构变异巨大,线粒体基因却极度保守。这种保守性导致线粒体基因组中编码基因的变异稀少,演化速率慢。然而,植物线粒体基因组的庞大和复杂性,却使得非编码区的修复机制与编码区不同。
植物基因组和动物基因组结构有什么区别 动物体和植物体的DNA基本是类似的,不通过个例基因基本分不出来。 你的补充不是很清楚,从粪便中的DNA来源有很多种,可以是没有消化完的食物的,也可以是消化系统中的微生物。
首先,大体上来说动物的基因组还是比植物更大的。题主可能只是对个别植物的基因组有印象,比如麦类,而忽略了拟南芥、水稻这些只有几百兆的基因组。可是动物的基因组很多都上Gb的,这个问题下牧羊的男孩儿的数据就很棒。其次,基因组大小跟生命活动的复杂性并没有关系。先从基因数目说起。
植物为适应不同的环境,或者说植物进化过程中适应过不同的、复杂性环境,并生存下来。之所以能生存不灭绝,就在于植物体中编码某蛋白质的基因已经不再局限于几个,而是突变为多个,这样才能生存下去,相反者早已灭绝。因此说“植物编码蛋白基因更多一些。
植物线粒体基因组的特性、成因及其后果是植物学研究的焦点之一。植物线粒体基因组的特点显著,表现为基因组大小和结构的变异巨大,而基因本身却极度保守;基因分布极为稀疏,富含大量非编码序列;存在大量RNA编辑现象。
植物细胞的线粒体基因组的大小差别很大,最小的为100kb左右,大部分由非编码的DNA序列组成,且有许多短的同源序列,同源序列之间的DNA重组会产生较小的亚基因组环状DNA,与完整的“主”基因组共存于细胞内,因此植物线粒体基因组的研究更为困难。
但动植物线粒体中的DNA多少有些区别。普遍来说,动物细胞中的线粒体DNA比较短,几乎没有内含子,基因多有重复。植物细胞的线粒体DNA较长,内含子较多,基因重复少。
植物细胞中的线粒体基因组表现出显著的多样性,其大小在100kb左右,非编码DNA占据了大部分。这些基因组含有多个短的同源序列,这些序列之间的DNA重组导致了小的亚基因组环状DNA的存在。这种复杂性使得对植物线粒体基因组的研究变得更加挑战性。相比之下,哺乳动物线粒体基因DNA的特点更为显著。
线粒体DNA是***的DNA双链分子,主要呈环状但也有线性的分子。各个物种的线粒体基因组大小不一。一般动物细胞中的线粒体基因组较小,一般只有几十Kb。植物的线粒体基因组比动物的大许多,也复杂得多,可达数百至数千kb。但即使如此,线粒体DNA与核DNA相比,其携带的信息量也是微乎其微的。
【答案】:哺乳动物中,线粒体DNA的突变率较核DNA高。然而植物中,线粒体DNA突变率比核DNA低。这一区别可能源于线粒体中的DNA聚合酶和DNA修复系统与核中的不同。
DNA的分布:细胞核:绝大多数DNA存在于细胞核的染色体上,这是DNA的主要储存场所。线粒体和叶绿体:在植物细胞中,除了细胞核外,线粒体和叶绿体也含有少量的DNA。动物细胞则只有线粒体含有少量DNA。这些细胞器中的DNA与细胞核中的DNA在结构和功能上有所不同。
植物线粒体基因组结构变异巨大,线粒体基因却极度保守。这种保守性导致线粒体基因组中编码基因的变异稀少,演化速率慢。然而,植物线粒体基因组的庞大和复杂性,却使得非编码区的修复机制与编码区不同。
植物细胞中的线粒体基因组表现出显著的多样性,其大小在100kb左右,非编码DNA占据了大部分。这些基因组含有多个短的同源序列,这些序列之间的DNA重组导致了小的亚基因组环状DNA的存在。这种复杂性使得对植物线粒体基因组的研究变得更加挑战性。相比之下,哺乳动物线粒体基因DNA的特点更为显著。
大脑的活动提供能量,植物则不需要这样做,而线粒体就是细胞中负责分解糖类提供能量的细胞器,因此动物细胞中的线粒体数量较多 植物的叶绿体实际上并没有产生能量,叶绿体只是制造糖类的场所 因此,植物有叶绿体并不是其线粒体少的原因,植物有叶绿体,只能导致它们“吃的少”。
线粒体:动植物都有,有氧呼吸主要场所。 核糖体:动植物都有,脱水缩合场所。 内质网:动植物都有,分泌蛋白加工运输场所。 高尔基体:植物:与细胞壁的形成有关 动物:与分泌蛋白的合成运输排出有关。
线粒体,细胞内的能量工厂,其基因组大小在不同物种中存在显著差异。哺乳动物,包括人、小鼠和牛,其线粒体基因组相对较小,大约为15千碱基对(kb)。每个细胞中含有多达数千份的线粒体基因组DNA拷贝,尽管具体数量对于果蝇和蛙还未有精确的测定数据。
植物和动物的基因组的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于动物基因和植物基因结合、植物和动物的基因组的信息别忘了在本站进行查找喔。